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TECHNICAL PAPER 

EXACT STATE RECONSTRUCTION IN DETERMINISTIC 
DIGITAL CONTROL SYSTEMS 

1. INTRODUCTION 

Books on modern digital control systems usually address the problem of controlling a continuous- 
time plant driven by a zero-order-hold with a sampled output as shown in Figure 1 [e.g., Ref. 1, p. 1261. A 
common solution to this problem is to reconstruct the state of the system at the sampling instant using a state 
observer and then to feed back the reconstructed state [ I ,  p. 1951. However, the state observer has two 
undesirable characteristics. First, it is a dynamical system in itself and, hence, adds additional states and 
eigenvalues to the system which can affect system stability. Second, as a consequence, the reconstructed 
state is normally an approximation to the true state and is usually not a good one early in the state recon- 
struction process. This paper presents a new state reconstructor for deterministic digital control systems 
which has neither of these problems. The new state reconstructor adds no new states, eigenvalues, or 
dynamics to the system. In fact, it does not affect the plant equation for the system in any way; it affects 
only the measurement equation. Furthermore, if the plant parameters are known exactly, the output of this 
new state reconstructor exactly equals the true state of the system. For these reasons, this new state recon- 
structor is herein called the ideal state reconstructor. Useful in the development of this ideal state recon- 
structor are some results to date for continuous-time plants driven by a zero-order-hold with sampled 
outputs. These are reviewed in Section 11, prior to the development of the ideal state reconstructor presen- 
ted in Section 111. Section IV describes two methods for choosing the reconstructor parameters. Section V 
presents an example illustrating the procedures to completely design the reconstructor using the methods 
described in Section IV. Section VI contains the conclusions and final comments. 

Figure 1. Continuous-time plant driven by a zero-order-hold 
with instantaneous measurements. 



II. PRELIMINARY 

For the plant in Figure 1 ,  x(t) is an n X 1 state vector, q(k) is an r x 1 control input vector, yr(k) 
is an m x 1 output or measurement vector, F is an n X n system matrix, G is an n x r control matrix, 
and CI is an m X n output matrix. Since yI(k) = CI x(k), where k is the usual shorthand notation for time 
kT, yI(k) represents an instantaneous measure of the system at the sampling instant kT. Hence, the plant 
in Fi-gure 1 can be regarded as having instantaneous measurements for outputs. It is well known that this 
system can be modeled at the sampling instants by the discrete state equations [ 1 ,  p. 1261 

x(k+ - 1) = Ax(k) + Bu(k) 

where 

+(t) = g-' [(SI-F)-'] , (3) 

and 

T 

B = [ s ' + ( X )  dX] G 
0 

+(t) is the n X n state transition matrix. A and B are the n X n system matrix and the n X r control 
matrix, respectively, for the discrete state equations (1) and (2). 

A and B can be determined analytically using equations (3) through (5). An alternative approach, 
which is also quite suitable for numerical computation, is as follows [2]: +(t) and J +(h)dh can be ex- 
pressed in the form of matrix exponential series as 0 

and 
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respectively. From equations (6) and (7), 

T 
where I is an n x n identity matrix. Hence, so @(X)dh can be determined using equation (7) with t = T 
and this result substituted into equation (8) to get +(T). With these results, A and B can be found using 
equations (4) and (5). 

Now consider the plant in Figure 2, which is a generalization of the one in Figure 1 .  In addition to 
the instantaneous measurement vector yr(kT), the plant in Figure 2 has the measurement vector yFr(kT) 
generated as follows. First, the continuous-time output z(t) is sampled every T/N seconds. Every N 
samples are multiplied by the weighting matrices Hj, j = 0: 1 i.. . ;N-l and then wmmed to generate the 
output yF(kT) every T seconds. Functionally, this is equivalent to passing the discrete measurements 
generated every T/N seconds through a multi-input/multi-output moving average (MA) process with 
coefficient matrices Hj, j = 0,1,. . . ,N-1 [3]. The output of the MA prefilter is sampled every T seconds 
to generate yF(kT). Then yF(kT) has subtracted from it E- u[(k-l)T], where E- is a constant matrix, to 
produce the-modified MA-prefiltered measurement vector yF'(kT). In Figure 2, CF is a p X n output 
matrix and z(t) is a p X 1 vector. The weighting matrices H,, j = 0,1,. ..,N-1 are each q x p. Hence, 
yF(kT) and iF'(kT) are q X 1 vectors. Since y[(k-l)T] is an r X 1 delayed input vector, E- is a q x r 
matrix. 

Lo- 
Figure 2. Continuous-time plant driven by a zero-order-hold with instantaneous. 

and modified MA-prefiltered measurements. 
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From Figure 2, yF(kT) can be written as - 

[ z[kT-(N-I) I] N 

where H is a q x (Np) matrix given by 

Previously, Polites [4] showed that when 

E- = HP , 

where P is the (Np) X r matrix 

P =  

the discrete state equations for the plant in Figure 2 become 

x(k+ 1) = Ax(k) + By(k) 
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where D- is a q x n matrix given by 

D- = Ha 

and 01 is the (Np) X n matrix 

E- and D- can be evaluated analytically using equations (3), ( 10) through ( 12), ( 15), and ( 16). An 
alternative approach, which can be either analytical or numerical, is as follows. Let t = -j(T/N), where 
. n i  ni 1 _ _ _  2 - - - -  - - - - - A : - -  /T\ L~--L- r-j(T/N) I/\ \ A \  N T  1 @..L-L:L-_L^ L L - - -  - - - . . l L -  

into equation (8) to get +[-j(T/N)], j = 0,1, ..., N-1. At this point, E- and D- can be found using 
equations (10) through (12), (15), and (16). 

v ( R ) U R , j  = G , :  ,. . . , l Y - l .  3UUblICUlC 111E;bClCbUllb 
0 J = U,l ,  ..., l \ - I ,  a l l U U b C C ~ U i l l l U l l ( / )  1UUClCLllllllC J 

111. THE IDEAL STATE RECONSTRUCTOR 

A general block diagram of the plant and the ideal state reconstructor is shown in Figure 3. The 
state reconstructor in Figure 3 is a generalization of the one presented in Reference 5. Observe the 
similarities, and differences, between Figures 2 and 3. In Figure 3, if E- is given by equation (1 l ) ,  then 

and 

where D- is given by equation (15). This follows from Figures 2 and 3 and equations (13) and (14). Also, 
in Figure 3, 
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However, for equation (19) to be meaningful, (D-T DJ' must exist, and this occurs only when (DPT D-) 
is nonsingular. Recall that D- is a q X n matrix. If q b n and D- has maximal rank (Le., rank n), then 
(DWT D-) is positive definite and therefore nonsingular [6]. Hence, equation (19) requires that q 2 n and 
rank (D-) = n for it and the ideal state reconstructor to be meaningful. Assuming this is the case, it 
follows from equations (17) through (19) that the discrete state equations for the system in Figure 3 are 

Hence, the output of the state reconstructor, yF))(k), equals the true state, x(k), exactly. Moreover, this is 
achieved without adding any new states, eigenvalues, or dynamics to the plant, since the plant equation 
(20) for the system in Figure 3 is identical to the plant equation (1) for the plant in Figure 1. 

In summary, the requirements which must be satisfied for the ideal state reconstructor in Figure 3 
to exactly reconstruct the state of the plant in Figure 3 are as follows. The plant matrices F, G ,  and CF 
must be known exactly in order to determine E- and D- according to equations (1 1) and (15), respec- 
tively. The number of rows, q,  in the weighting matrices Hj, j = 0 , l  ,. . . ,N- 1 must be greater than or 
equal to the number of states in the plant, n. The q X n matrix D- in equation (15) must have rank n. So 
long as these requirements are met, there are no other restrictions on the ideal state reconstructor, includ- 
ing its weighting matrices. This is very desirable because it means there are a multitude of ways to choose 
the weighting matrices and still achieve exact state reconstruction. Two distinct methods for doing this 
are presented in Section IV. 
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IV. CHOOSING THE PARAMETERS IN THE IDEAL 
STATE RECONSTRUCTOR 

Once the measurements which are inputs into the ideal state reconstructor have been specified, 
the p X n output matrix CF is defined. To complete the definition of the reconstructor, the following 
parameters must be chosen: the number of weighting matrices in the state reconstructor N, the number of 
rows in each weighting matrix q,  and the elements of each q x p weighting matrix H,, j = 0 , l  ,. . . ,N-1 . 
While there are countless ways of choosing these, two distinct methods are presented. 

Method A. Let H = (aTa)-' aT 

Consider H, the q X (Np) matrix formed by catenating the weighting matrices H,, j = 0, 1 , . . . ,N- 
1 as in equation (10). Consider also a, the (Np) x n matrix defined by equation (16). If Np 2 n and 
rank(a) = n, then (aTa) is positive definite and therefore nonsingular [6]. If this is the case, then H can 
be given by the pseudo inverse of a or 

H = (aTa)-' aT . (21) 

Hence, N must be chosen so that Np 2 n, or equivalently N 2 n/p. Having chosen N, a can be deter- 
mined using equation (16). If it has rank n, then let H be given by equation (21). This makes H an 
n X (Np) matrix and means that q = n in this case. Substituting equation (21) into equation (15) yields 
D- = I, where I is an n X n identity matrix. Consequently, 

also. This simplifies the state reconstructor by eliminating the need to solve equation (19) in it. From 
equations (1 1 )  and (21), E- is found to be 

E- = (aTa)-' aT p , (23) 

where p is defined by equation (12). From equations (10) and (21), 

T [Ho j HI  i ... "-11 = (aTa)-' O! , 

which reveals the N n x p weighting matrices. The state reconstructor is now completely defined for 
this method. It is equivalent to the one described in Reference 5. 
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Method B. Let H = I 

In this method, let 

H = I ,  

where I is an (Np) X (Np) identity matrix. Since H is a q x (Np) matrix in general, this means that 
q = Np in this case. Recall from Section I11 that one requirement for the reconstructor to be meaningful 
is for q 2 n. Consequently, N must be chosen so that Np b n or, equivalently, N b n/p, just as in 
Method A. Having chosen N, a can be determined using equation (16). Substituting equation (25) into 
equation ( 1  5 )  yields 1 

Recall also from Section I11 that another requirement for the reconstructor to be meaningful is for 
rank(D-) = n. By virtue of equation (26), it is necessary for rank(a) = n, just as in Method A. It 
follows from equation (26) that 

From equations (21), (22), (25), and (27), one can see the relationships which exist between H and 
(D-T D-)-' DPT in Methods A and B. From equations (1 1) and (25), E- is found to be 

where p is defined by equation (12). From equations (10) and (25), 

which reveals the N (Np) X p weighting matrices. However, recognize from equations (9) and (25) that 



Hence, in this method, the intermediate output yF(kT) can be formed directly by catenating the meas- 
urements Z[kT - j(T/N)], j = O , l ,  ..., N-1 as in-equation (30). This is the beauty of this method. 

This description completes the definition of the ideal state reconstructor for this method. In Sec- 
tion V, an example is presented which illustrates the procedures to completely design the ideal state 
reconstructor using both methods presented in this section. 

V. ANEXAMPLE 

Consider the double integrator plant driven by a zero-order-hold as shown in Figure 4. The con- 
tinuous-time output z(t) is sampled every TIN seconds and input into the ideal state reconstructor together 
with the control input u(kT). The parameters in the state reconstructor will be chosen to achieve exact 
state reconstruction using both of the methods described in Section IV. 

Manipulating the plant in Figure 4 into the format of Figure 3 yields 

and 

[FI = [ O  0 0  '1 9 

Using equations (31) and (32) and the formulas presented in Section 11, 

(35) 
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Figure 4. Plant and ideal state reconstructor 
for the example. 

A = [b :I 
and 

Since CF is a p X n matrix, it follows from equation (33) that p = 1 and n = 2. Hence, the requirement 
to select N so that N 2 n/p can be satisfied by letting 

N = 4 .  

Using equations (12), (16), (32) through (35) and (36), (Y and p are found to be 

T 
4 

1 -- 

2T 
1 -- 

4 
3T 

1 -- 4 - 



and 

32 

32 

respectively. In equation (37), eliminating any 2 rows forms a 2 x 2 matrix with nonzero determinant, 
assuming of course that T > 0. Hence,rank(a) = 2 = n and so (aTa) is nonsingular. Consequently, 
(aTa)-' aT exists and is found to be 

I [ (&) (&) (-&) (-&) 

($) (&) (k) (-+) 
(aTa)-' aT = 

From equations (21): (24): and (39): 

using equation (37). 

Method A. Let H = (aTa)-' aT 

? (39) 

which reveals the weighting matrices Hj, j = 0,1,2,3. From equation (22) and the fact that n = 2, 
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From equations (23), (38), and (39), 

E- 

This completely defines the ideal state reconstructor for this example and this method. 

Method B. Let H = I 

Since N = 4 and p = 1, it follows that q = Np = 4. From equations (25) and (29), 

' 1  I 

0 ;  

O I  

0 ;  

I 
I 
I 

I 
I 
I 

I 

- 1  

, 

which reveals the weighting matrices Hj, j = 0,1,2,3. However, from equation (30), the intermediate 
output yF(kT) can be related directly to the measurements z[kT - j(T/4)], j = 0,1,2,3 and is 

2T 
4 

3T 
4 

z(kT --) 

z(kT ---) 

From equations (27) and (39), 

L 
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From equations (28) and (38), 

b 

E- = 4T2 
32 
- 

9T2 

This completes the definition of the ideal state reconstructor for this example and this method. 

VI. CONCLUSIONS AND RECOMMENDATIONS 

A new state reconstructor for deterministic digital control systems has been presented which 
Offers iwo distinct advantages over t‘ne widely used state observer. First, it adds no new states, eigen- 
values, or dynamics to the system and, consequently, will not alter the stability of the system. In fact, 
adding the new state reconstructor to the system will not affect the plant equation in any way. It only 
affects the measurement equation. Second, if the plant parameters are known exactly, the reconstructed 
state will exactly equal the true state of the system, not just approximate it. For these reasons, this new 
state reconstructor has herein been called the ideal state reconstructor. Its disadvantages are that the plant 
output must be sampled and calculations must be performed more frequently than with the state observer. 
Fortunately, this is not the problem it was 20 years ago, considering the speed of today’s digital 
computers. 

If the research in this report is extended, two approaches are recommended. One is to explore 
other methods for choosing the parameters in the ideal state reconstructor. Two distinct methods have 
been presented here, each with attractive features of its own. However, these do not exhaust all the possi- 
bilities, by any means. For example, the weighting matrices could be selected so the MA prefilter acts as 
a multi-input/multi-output low-pass filter for the case where measurement noise is present. The other 
approach is to investigate the robustness of the ideal state reconstructor and see how it compares with the 
state observer’s. Specifically, the following questions should be addressed. What effect do modeling 
errors in the plant have on the ideal state reconstructor, and how does this compare with the state 
observer? What effect do plant process and measurement noise have on the ideal state reconstructor and 
how does this compare with the state observer, or even the Kalman filter? How can the robustness of the 
ideal state reconstructor be improved? Increasing the number of weighting matrices, N, may be one 
possibility. Catenating the ideal state reconstructor with a state observer, or a Kalman filter, may be 
another. This might produce a composite estimator which is better than either the ideal state reconstruc- 
tor, the state observer, or the Kalman filter alone. 
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